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We  present  a Bayesian  approach  for  automatic  event  analysis.
The  method  was  designed  and  validated  for  voltage-clamp  recordings.
The  method  outperforms  existing  methods  on simulated  and  real data.
We  demonstrate  extensions  useful  for  synaptic  mapping  experiments.
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Background:  Investigation  of  neural  circuit  functioning  often  requires  statistical  interpretation  of  events
in  subthreshold  electrophysiological  recordings.  This  problem  is  non-trivial  because  recordings  may  have
moderate  levels  of  structured  noise  and  events  may  have  distinct  kinetics.  In addition,  novel  experimental
designs  that  combine  optical  and  electrophysiological  methods  will  depend  upon  statistical  tools  that
combine  multimodal  data.
New  method:  We  present  a  Bayesian  approach  for inferring  the  timing,  strength,  and  kinetics  of  post-
synaptic  currents  (PSCs)  from  voltage-clamp  electrophysiological  recordings  on  a per event basis.  The
simple  generative  model  for a single  voltage-clamp  recording  flexibly  extends  to  include  additional
structure  to  enable  experiments  designed  to  probe  synaptic  connectivity.
Results:  We  validate  the  approach  on simulated  and  real  data. We  also  demonstrate  that  extensions  of
the  basic  PSC  detection  algorithm  can  handle  recordings  contaminated  with  optically  evoked  currents,
and  we  simulate  a scenario  in which  calcium  imaging  observations,  available  for  a subset  of  neurons,  can
be fused  with  electrophysiological  data  to achieve  higher  temporal  resolution.
Comparison  with  existing  methods:  We  apply  this  approach  to  simulated  and  real  ground  truth  data  to

demonstrate  its  higher  sensitivity  in detecting  small  signal-to-noise  events  and  its increased  robustness
to  noise  compared  to standard  methods  for  detecting  PSCs.
Conclusions:  The  new  Bayesian  event  analysis  approach  for electrophysiological  recordings  should  allow
for better  estimation  of physiological  parameters  under  more  variable  conditions  and  help support  new
experimental  designs  for  circuit  mapping.
. Introduction
Subthreshold neuronal activity provides an unsurpassed rich-
ess of information about a single cell’s physiological properties.
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Access to subthreshold activity allows for inference about intrinsic
biophysical properties (e.g. membrane and ion channel parame-
ters), circuit level properties (e.g. synaptic connectivity), neural
coding (e.g. receptive fields), and synaptic properties (e.g. quan-
tal properties and plasticity). At present, whole-cell patch-clamp
stands alone in its ability to reliably access subthreshold activity

owing to excellent signal-to-noise ratio (SNR) and very high tem-
poral precision, as opposed to optical subthreshold measurements.
At the same time, optical technologies have advanced to the point
where we  can observe the suprathreshold activity of hundreds of
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ndividual neurons simultaneously with calcium imaging and stim-
late neurons by subtype or spatial location (Rickgauer et al., 2014).
owever, the limits on temporal resolution and the indirectness
f the observations make inferring fine-scale network and cellular
arameters difficult. Approaches which combine optical tools with
lectrophysiology offer unique advantages (Scanziani and Häusser,
009). In this work, we present new statistical techniques useful
or analyzing whole-cell data as well as extensions demonstrat-
ng how our approach is particularly well-suited to settings where
lectrophysiology is combined with optical physiology.

.1. Our setting and approach

Fundamentally, many of the subthreshold-based analyses men-
ioned above depend on the interpretation of the recorded time
eries as a sequence of events.  In this setting, events are the suc-
essful transmission of neurotransmitter onto the recorded cell,
nd when this occurs, a transient current flows into or out of the
ell, known as a postsynaptic current (PSC). The analyses of experi-
ents designed to infer properties of evoked or spontaneous inputs

o a cell (e.g. monosynaptic mapping or quantal/mini-PSC analy-
es) require determining when a postsynaptic event happened and
escribing that event. Estimating PSC properties is most straight-
orward when recordings are acquired using the voltage-clamp
onfiguration which employs a feedback circuit to hold the mem-
rane potential at a constant value thus mitigating variability in
SC properties due to the intrinsic biophysics of the cell (though
ee Bar-Yehuda and Korngreen, 2008).

In this work, we present a Bayesian approach for inferring
he timing, strength, and kinetics of postsynaptic currents from
oltage-clamp recordings, and we demonstrate on simulated and
eal data that this method performs better than standard meth-
ds for detecting PSCs. The improvement in single-trial accuracy
ith our method should allow for better estimation of physiologi-

al parameters with less data and under more variable conditions
e.g. when the exact timings of stimuli or its effects are unknown).
n addition, the quantification of uncertainty over PSC features pro-
ided by Bayesian inference enables new experimental designs (e.g.
hababo et al., 2013).

Bayesian approaches are naturally extensible, so the intuitive,
enerative model and straightforward inference procedure flexi-
ly extend to include structure relevant to the analyses mentioned
bove. Specifically, we extend the core single-trial model to include
ypes of data obtained in monosynaptic mapping experiments
hich may  involve optical stimulation artifacts or combine voltage-

lamp recordings and optical recordings. For this latter extension,
e combine the single trace model presented in this work with

elated work on calcium imaging (Pnevmatikakis et al., 2013) to
emonstrate a Bayesian approach to analyzing mapping experi-
ents consisting of simultaneous population calcium imaging and

ingle cell voltage-clamp recordings (Aaron and Yuste, 2006).

.2. Review of other approaches

To the best of our knowledge, all previous methods for inferring
SCs have relied on first inferring the timing of single events (i.e.
vent onsets), and then sometimes fitting per-event kinetics given
hat event time. These methods have tended to fall into two  cat-
gories. The superficially simpler of the two approaches is to find
vents by thresholding the trace or its first derivative (i.e. finite
ifference). In practice, such methods have extra parameters for
moothing, computing the appropriate offset, or post-processing.

mplementations tend to over-detect candidate events and then
valuate candidates based on analysis of per event kinetics (Jonas
t al., 1993; Ankri et al., 1994; Hwang and Copenhagen, 1999;
udoh and Taguchi, 2002). For concreteness, consider a two-stage
ce Methods 269 (2016) 21–32

approach wherein a threshold is used to identify initial candidates,
and then a model is fit to the transient dynamics in order to con-
firm or reject candidate events by comparison of the parameters of
the dynamics against pre-determined criteria (Ankri et al., 1994).
Even with post-processing, such methods can be non-selective and
tend not to exploit all of the available information (i.e. the transient
dynamics are not used to detect the events initially).

Threshold methods have been largely superseded by the sec-
ond class of approaches, template-based methods (Clements and
Bekkers, 1997; Pernía-Andrade et al., 2012). In these methods, tem-
plates are usually learned by averaging event-responses collected
by a simpler method (e.g. thresholding and/or hand-curation).
While template methods are straightforward, initial attempts to
apply these methods failed when the amplitude of the events var-
ied or where events overlapped – both common scenarios. The
first commonly used algorithm for PSC detection that attempted to
avoid issues related to amplitude variability introduced the idea of
rescaling a fixed template at each time step (Clements and Bekkers,
1997). Following this trend, template-matching approaches have
gradually shifted towards deconvolution methods, which are a
more well-founded way to use templates (Pernía-Andrade et al.,
2012). Deconvolution generally refers to methods that assume the
observed trace is the result of convolving a template with unob-
served events (of varying amplitude), and such methods invert
this model to estimate the times from the template. Both of these
template-based methods produce inferred events with different
amplitudes and a threshold can then be used to screen out small
events (see Guzman et al. (2014) for a Python implementation of
Clements and Bekkers (1997) and Pernía-Andrade et al. (2012), and
see Richardson and Silberberg (2008) for deconvolution of current
clamp traces).

Methods that rely on fixed-shape templates can work very
well when the shape of the event is consistent across events, but
postsynaptic events can vary in shape and amplitude, especially
for events from different pre-synaptic sources due to different
dendritic filtering, issues with space-clamp, or different receptor
subunit distributions. Indeed, a core rationale behind the initial
preference for threshold based approaches was the recognition that
events may  vary too much for a single template. While it is possible
to use approaches that employ multiple templates (Li et al., 2007;
Shi et al., 2010), there are still potential issues related to the stage-
wise separation between learning the template and subsequent
detection causing a sub-optimal use of information.

We take a Bayesian approach, rooted in a probabilistic, gener-
ative model. Broadening the taxonomy, this approach is a type of
deconvolution method. However, we  do not consider a single tem-
plate (or a handful of templates), but instead a distribution over
templates through the use of prior distributions on the kinetics and
amplitudes of individual PSCs. Importantly, we also model event
timing in continuous time (i.e. without binning), and we  incorpo-
rate an autocorrelated, AR(p) noise process (Chib and Greenberg,
1994), which provides a more accurate description of the data. This
leads to more precise detection of event times and inference that
is more robust (i.e. less susceptible to noise). As such, our inference
better leverages all available information (i.e. all events and full
timecourse of each event). Given this probabilistic formulation of
the noise process and the inclusion of priors on the PSC features, we
can then perform posterior inference in this model using Markov
chain Monte Carlo (MCMC, see Section 2).

A tradeoff is that the proposed approach is more computation-
ally intensive than previous approaches. Nevertheless, we  believe
the flexibility and robustness that this approach affords makes up

for this in many settings. Beyond handling overlapping events and
variation in the shape of events, our method inherits advantages
of probabilistic modeling. The method is extensible and amenable
to serving as a modular component of hierarchical models, as we
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Fig. 1. The correspondence between real data and the generative model. (A) A real voltage-clamp recording. (B) Simulated synaptic currents generated from a fit to the data
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n  (A) (noiseless). (C) AR(p) noise process (p = 2) generated from a fit to the data in (A
C)),  to illustrate that the simulation visually captures core features of the real data
anel  (F) the individual simulated events used in (B) (with normalized amplitudes)

how. Moreover, while existing methods tend to produce all-or-
one results and the precise timing of the event is a secondary
onsideration, using a probabilistic approach, it is straightforward
o consider posterior uncertainty. We  essentially get a level of con-
dence for detection of each event and the level of uncertainty in
he precise timing of the event. This posterior uncertainty in event
imes can translate into posterior uncertainty for other parameters
f interest, such as synaptic weights.

.3. Overview

In the following sections, we will first present the details of the
odel for single-trial voltage-clamp traces and extensions men-

ioned previously. We  then provide the details of the inference
cheme we use for sampling from the posterior distribution. In
he results, we compare our approach with the standard template-
ased approach (Clements and Bekkers, 1997) as well as a Wiener
iltering approach (Wiener, 1949), since these serve as competi-
ive and robust baselines. Note that while we are not aware of the

iener Filter having been explicitly proposed for this application,
he Wiener Filter is a standard deconvolution approach (similar to
ernía-Andrade et al., 2012). Unlike the deconvolution approach in
ernía-Andrade et al. (2012), the Wiener Filter automatically and
ptimally determines deconvolution parameters from the power
pectral density (PSD), and we found this performs better over

 range of data than a deconvolution approach with hand-tuned
arameters (not shown). We  show inference results from our
pproach on simulated and real data for spontaneous EPSCs and
PSCs across several cell types, PSCs evoked via paired-patching
s ground-truth validation, and PSCs evoked optically with one-
hoton and two-photon stimulation with stimulation artifacts. We
lso show results on simulated data for a mapping experiment
hich combines voltage-clamp recordings with calcium imaging,

llustrating extensibility.

. Methods

We  draw on tools developed in statistics (Moller and
aagepetersen, 2004) and signal processing (Tan and Goyal,
008) to decompose a voltage-clamp recording into interpretable
lements. In this application, our events are unitary synaptic cur-
ents and their features describe the strength and kinetics of each
vent. In previous work, we have found similar methods useful for
 A model-based voltage-clamp recording simulation (the sum of the data in (B) and
dividual events estimated from the data in (A) (with normalized amplitudes), and

inferring spiking events in calcium imaging data (Pnevmatikakis
et al., 2013).

The framework involves (1) specifying a generative model for
voltage-clamp recordings, the parameters of which describe event
times, features, the noise model, etc., and (2) performing Bayesian
inference on event times and features and the model parameters
jointly. Theoretically, Bayesian estimators have nice guarantees
(under a “true” model, see Lehmann and Casella (1998)). In practice,
the generic Bayesian approach can fail if the model is inadequate
(e.g. in our case, if the generative model does not capture the true
statistics of voltage-clamp traces) or if the inference algorithm
performs poorly and the true model posterior is not obtained. Moti-
vated by these legitimate concerns, it is critical to validate that for
our application, the model captures the statistics of real voltage-
clamp data and that inference performs well on both simulated
and real data (see Section 3).

2.1. Model of a single electrophysiological trace

In the simplest version of our model, the observed current trace,
yt, is a discrete time series composed of the sum of n unitary synap-
tic currents, a baseline (holding current), b, and observation noise
�t (Eq. (1)).

yt =
n∑

i=1

aifi(t − ti) + b + �t. (1)

fi(t) = (e−t/�d
i − e−t/�r

i )1 (t >=  0).  (2)

�t =
p∑

j=1

�j�t−j + ut, ut∼N(0,  �2). (3)

Each event, indexed by i, is characterized by an event time,
ti ∈ R

+, which need not be aligned with the sampling time of yt, its
own kinetics determined by fi(·), and a strength which we define
as the amplitude, or peak current, of the event, ai. For synaptic
currents, we  use a difference of exponentials for fi which is param-
eterized by a rise time constant, �r

i
, and a decay time constant, �d

i
.

For an example of the model, see Fig. 1B–D. Observe in Fig. 1E

that recovered kinetics of individual events do vary significantly,
suggesting that a model which captures this structure should per-
form better than methods which rely on a single (or handful of)
template(s).
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addition, one could create several optical current templates based
on the distance of the stimulation site from the soma (Mena et al.,
2015).
4 J. Merel et al. / Journal of Neur

As opposed to an i.i.d. Gaussian noise process, the more gen-
ral autoregressive, AR(p), process better captures the noise in
oltage-clamp recordings. We  have found the noise model to be
rucial for robust inference (see Section 3). In an AR(p) noise model,
he noise has temporal correlations due to direct dependencies
etween noise values for p timesteps. In this work, we use an AR
oise model with p = 2 (Eq. (3)). Voltage-clamp recordings exhibit
orrelated noise whose source can be electrical hardware, changes
n resistance between the electrode and the interior of the neuron,
nd other biological non-event contributions to the observation. In
ractice, it is these forms of temporally correlated noise which lead
o many of the false positives since they are more likely to exhibit

 similar shape to true events.
With Eqs. (1) and (3), we can write down the likeli-

ood of the observed, noisy data given the parameters (� ≡
�, b, n, {ai, ti, �d

i
, �r

i
}
i=1,...,n

, {�j}j=1,...,p
}). We  begin with the i.i.d,

.e. AR(0), case,

(Y |�) =
T∏

t=1

(2��2)
−1/2

exp
[
− 1

2�2
(yt − ŷt)

2
]

, (4)

here ŷt refer to the predicted noiseless trace:

ˆt =
n∑

i=1

aifi(t − ti) + b. (5)

n Eq. (8) of Chib and Greenberg (1994), the likelihood is extended
o the AR(p) case

(Y |�) =
T∏

t=1

(2��2)
−1/2

exp
[
− 1

2�2
(yt − ŷt|t−1)2

]
, (6)

here ŷt|t−1 is (adapted from Eq. (11) of Chib and Greenberg (1994),
mitting boundary observations),

ˆt|t−1 = ŷt +
p∑

j=1

�j(yt−j − ŷt−j). (7)

The probabilistic model provides a natural objective function:

(�|Y) ∝ ln p(Y |�) + ln p(�). (8)

It is possible to optimize this log-posterior directly, or inference
an be performed to obtain an estimate of the posterior distribu-
ion. p(�) corresponds to the prior probability on the parameters.
n a probabilistic formulation, it is worth explicitly keeping in mind
hat the posterior distribution for a given parameter can only have
upport where its prior distribution has support, so hard constraints
e.g. a parameter being positive or a minimum amplitude size) are
aturally incorporated as prior information. For amplitudes, base-

ines, time-constants, and event times, we use non-informative,
mproper uniform priors over either real or bounded real numbers
we selected very broad ranges appropriate for each parameter).
he prior on the event count is given by a Poisson distribution which
as one free parameter corresponding to the prior expected num-
er of events – this is a parameter that a user would tune depending
n their general expectation about the number of events in their
ata. The prior on the noise level �2 is a diffuse inverse gamma dis-
ribution (which is the conjugate prior), and we use a diffuse prior
istribution over � (i.e. a normal distribution subject to stability
onstraints, same as Chib and Greenberg (1994)) – see Section 2.3
n inference for more details.

Additionally, we note that more sophisticated priors in a

ayesian model serve as natural ways to extend the core model.
or example, distributions over event features could be modulated
y clustering onto presynaptic sources or the rate of events in each
race could be time-varied based on stimulation of presynaptic cells
ce Methods 269 (2016) 21–32

in mapping experiments. Model extensions are explored in the next
section.

2.2. Model extensions

2.2.1. Including optical currents
In this extension, we consider an active mapping experiment

where we  have some level of spatially structured optical stim-
ulation (via optogenetics Fenno et al., 2011 or neurotransmitter
uncaging Callaway and Yuste, 2002) of presynaptic cells while hold-
ing a postsynaptic cell in voltage-clamp (Shepherd et al., 2005;
Katzel et al., 2011). In this setting, detections of PSCs coinci-
dent with stimulations can be used to infer connectivity between
neurons. However, in some protocols, the postsynaptic cell also
responds to the stimulation.2 If this is the case, we will see a direct
optically evoked current in our voltage-clamp recording when we
attempt to stimulate cells near the patched cell. In order to remove
artifacts of this sort, we can incorporate a parameterized, additive
term in the generative model and then perform inference jointly
with respect to these parameters. The choice of an additive term is
more reasonable for optogenetic stimulation because the currents
are carried through different channels whereas with neurotrans-
mitter uncaging the direct stimulation current and the synaptic
current may  be competing for the same channels.

For example, it is straightforward to include a parameterized
kernel for the optical response of the neuron, h(·), and then to con-
volve that response with the known optical input to the neuron
(e.g. the laser or LED power),

yt =
n∑

i=1

aifi(t − ti) +
ns∑
j

ajh(�h) ∗ dj(t) + b + �t, (9)

where we  have ns optical inputs each with known timecourse dj(t)
and the response kinetics are modeled with a convolution which
is parameterized by �h (e.g. a set of time constants). Each stimu-
lation will have its own gain, as, which depends on the density of
the corresponding channels at the location of that stimulation. We
have found this approach to be useful under certain conditions with
optogenetics (Fig. 5D). However, for some optogenetic currents,
the multi-state kinetics of opsins can make it difficult to design
a parameterized h(·) which can be sampled efficiently. In this case,
the shape of the optical current could be measured empirically and
then modeled as

yt =
n∑

i=1

aifi(t − ti) +
ns∑

j=1

ajh(t − t(s)
j

) + b + �t, (10)

where h(·) is now the stereotyped shape of the current and we know
the set of times {t(s)

j
}
j=1,...,ns

at which we have stimulated. Since the

currents are filtered in the dendrites, Eq. (10) breaks down slightly
when handling stimulations at locations at varying distances from
the soma of the patched cell (Fig. 5D). Nonetheless, it still provides a
good trade off between accuracy and computational tractability. In
2 This is seen with glutamate uncaging at locations near the patched cell and could
also occur with optogenetics when mapping connections between cells of the same
transcriptional identity in the same location or when mapping many heterogeneous
populations of cells (i.e. when a pan-neuronal promoter is be used).
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.2.2. Mapping with calcium imaging and voltage-clamp
ecordings

Next we extend the model to show how the inferred events
ould be identified with presynaptic sources when the local popu-
ation is partially observed via calcium imaging (Aaron and Yuste,
006) (alternatively, a similar approach could combine information
rom voltage imaging). In this setting, our observations will consist
f the fluorescence traces of the imaged cells and the voltage-clamp
ecording. Both the presynaptic fluorescence traces, ck

t where k
ndexes the neurons observed via imaging, and the postsynaptic
lectrophysiological recording, yt, can be interpreted as a sum of
vents (Pnevmatikakis et al., 2013),

k
t =

nk∑
i=1

a(c)
k

gk(t − tki) + bk + 	k
t , (11)

t =
K∑

k=1

nk∑
i=1

a(y)
k

fk(t − tki) +
n∅∑
j=1

a(∅)
j

fj(t − tj) + b + �t, (12)

ith �t as before and 	k
t ∼N(0,  
2

k
). Like fk(·), gk(·) is also a sum

f exponentials but the timescale of the kinetics is much slower.
tj}j=1,...,n∅

are the times of PSCs with no corresponding imaged,
resynaptic cell. We  want to point out that because we model the
rocess in continuous time, the observed calcium traces need not
ave the same sampling rate or observation times as each other or
he voltage-clamp recording (which will be sampled many orders
f magnitude faster).

In this demonstration, we have chosen to assume the calcium
vents for the same cell are all of equal amplitude – this would be
ppropriate if the spikes occur sparsely or if calcium transients sum
oughly linearly. If the summation is known to be nonlinear with
ome biophysically plausible nonlinearity (e.g. see Vogelstein et al.,
009), this could be straightforwardly accommodated by modifying
he model and similar inference methods may  still be applied. Alter-
atively, it is also straightforward for the calcium event amplitudes
o vary across events.

We  have similarly chosen for all postsynaptic events to be of
he same amplitude and shape when they follow from a specific
resynaptic cell, but in practice one can extend the clustering to

mpose cell-specific priors on these amplitudes and shapes. Some
ubset of events observed in the electrophysiological recording will
rise from unobserved presynaptic inputs so we  allow these to
e explained by events with no observed presynaptic cause and
ith independent shape and amplitude per event (second summa-

ion term indexed i = 1, . . .,  n∅). We  could also incorporate a fixed
elay between presynaptic events and postsynaptic events (this
ould be an additional parameter, pre-specified or inferred, in the
ostsynaptic transient response fk(·)).

Since we now observe multiple traces, our new objective func-
ion is simply the sum of the log probabilities of the various traces.
he multiple traces are conditionally independent given event
imes {tki}k=1,...,K,i=1,...,nk

and {tj}j=1,...,n∅
, so we have an overall

bjective corresponding to the log-posterior:

(�|Ck, Y) ∝ ln p(Y |�) +
K∑

k=1

ln p(Ck|�)  + ln p(�), (13)

gain with p(�) corresponding to the prior probability on the full
et of parameters (see Section 3.4 for results).

.3. Inference
For this work, we perform inference using Markov chain Monte
arlo (MCMC) (Neal, 1993; Gelman et al., 2014). MCMC techniques
llow us to obtain samples from the posterior distribution over
ce Methods 269 (2016) 21–32 25

all unknown variables in the model and thereby approximate the
posterior by a histogram of such samples. Specifically, we  perform
Gibbs sampling over all the parameters (Gelman et al., 2014). This
means that for each parameter, we  hold all other parameters fixed
and conditionally update the focal parameter by sampling it from
its conditional distribution. A “sweep” consists of an update of all
parameters. While it is possible to compute conditional distribu-
tions analytically for sufficiently simple models, it is quite simple
to use generic sampling methods to update parameters for any
model for which one can compute the likelihood. For example, we
use random-walk Metropolis (RWM)  to update many parameters –
this consists of updating parameters by proposing updates from a
distribution centered on the current value and accepting or reject-
ing proposed updates such that the resulting set of samples are
consistent with the conditional distribution (Gelman et al., 2014).
Alternatively, more powerful samplers such as Hamiltonian Monte
Carlo could be used (Gelman et al., 2014) but simple RWM  sufficed
here.

In the single-trial, voltage-clamp case, we update
{ti, ai, b, �d

i
, �r

i
}
i=1,...,n

by RWM.  Inclusion of a direct optical
current, in the simplest case, only contributes one additional
amplitude parameter for each stimulation, and these can be
inferred similarly. Through sampling, we  also estimate the pos-
terior distribution of the number of events in each trace, given a
Poisson prior (note that this could be generalized to an inhomoge-
nous Poisson process prior so that the event rate can vary based on
inputs such as optical stimulation). To add and remove events (i.e.
perform inference over n), we  use birth-death moves which consist
of the proposal of a new event time and the removal of an existing
event time respectively (Moller and Waagepetersen, 2004).

The noise process parameters �1,. . .,p are sampled by rejection
sampling from the constrained conditional distribution and � is
sampled from its conditional distribution. Specifically, we repro-
duce the updates for the �1,. . .,p and �, which are provided in Section
4.1 of Chib and Greenberg (1994). �1,. . .,p is shown to be condition-
ally normal with a mean and posterior that depend on êt = yt − ŷt

and �2, but also with the constraint that the AR(p) process defined
by �1,. . .,p is stable (note that stability here means that the AR pro-
cess remains bounded on bounded intervals if run autonomously,
which can be quickly checked by examining the magnitude of the
roots of the associated characteristic polynomial Lay, 2012). Omit-
ting boundary observations:

E = [êt−1, . . ., êt−p], (14)

˚n = ˚0 + �−2(E′E), (15)

�̂ = ˚−1
n (˚0�0 + �−2E′e), (16)

�∼N(�̂, ˚−1
n )1S�, (17)

where 1S� is an indicator over the set of stable � values and �0 and
˚0 are set to weakly informative prior values. Following Chib and
Greenberg (1994), we place an inverse-gamma prior on �2, which
is the conjugate prior given the likelihood (Eq. (6)) so that we can
sample directly from the conditional posterior,

ı1 =
T∑

t=1

(yt − ŷt|t−1)2, (18)

�2∼IG
(

1
2

(T + 
0),
1

(1/2)(ı1 + ı0)

)
, (19)

where 
0 and ı0 are also set to weakly informative prior values.

For the full mapping case, inference is similar. However, addi-

tional moves need to be incorporated to improve mixing. That is, in
addition to the single-variable updates, additional custom moves
are performed each sweep. The additional moves correspond to
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roposing a swap for the presynaptic identity for a PSC event. That
s, an MCMC  step is proposed wherein an event associated with one
resynaptic source is eliminated and an event at the same time is
onsidered for another source. To implement such moves, we sim-
ly propose to drop an event at a given time for one presynaptic
ource and to add an event at the same time for another presynaptic
ource and evaluate the combined acceptance or rejection of these
roposed moves using the Metropolis-Hastings ratio (Gelman et al.,
014).

.4. Specific implementation details

Code implementing our inference routine is available on
ithub.3 When applying our inference method to data, we  can run
rom a cold start, or we can initialize event times with those found
ia a simpler, faster method (e.g. Clements and Bekkers, 1997 or
ernía-Andrade et al., 2012). In this work, to establish initial per-
ormance of our algorithm, we present results on simulated and
eal data using cold starts. MCMC  methods ideally will be run long
nough that a proper posterior distribution can be estimated. A
tandard convergence check for MCMC  methods is to run multi-
le chains and assess that they provide similar estimates. We  did
ot run multiple Markov chains in this case for all analyses. Rather,

or ease of use, we followed a simple heuristic of initially tuning
he total number of sweeps by running multiple Markov chains
nd then consistently performing a conservatively large number
f sweeps to robustly achieve good performance (i.e. as measured
elative to other methods).

For applications, it is pragmatic to adjust the total number of
amples to trade off reliability (i.e. high probability of convergence)
gainst computation time. For small timeseries (roughly 1 s), infer-
nce consisting of 2000 sweeps of the sampler tends to provide
n accurate posterior (see Section 3, simulated data) and requires
nywhere from a few seconds to a few minutes on a contem-
orary computer depending on the number of inferred events. It

s standard to discard the first fraction of the sweeps as burn-in
we discard between one-fifth to two-fifths of the total number of
weeps, depending on the event rate and its prior). For longer time-
eries or many timeseries, we run smaller sections of the timeseries
n parallel on a computing cluster (on a single CPU, the compu-
ation time would scale linearly with the number of requested
amples and scale linearly in the number of inferred events, which
s assumed to be proportional to the length of the trace). We  also
ote that RWM  requires a proposal width hyperparameter – this
an be automatically tuned early in the sampling process by adjus-
ing the proposal variance such that the accept rate is reasonable
Rosenthal, 2011). We  perform this automatic tuning in an ad hoc
daptive fashion, incrementally increasing or decreasing the pro-
osal variance when either too many or too few moves are being
ccepted.

We also note that in the implementation, we frequently rely on
he log-likelihood, ln(p(Y|�)), to determine whether to accept or
eject moves. In order to minimize redundant operations, it proves
seful to store êt = yt − ŷt and we perform evaluations of yt − ŷt|t−1
y observing that:

t − ŷt|t−1 = yt −

⎛
⎝ŷt +

p∑
j=1

�j(yt−j − ŷt−j)

⎞
⎠ (20)

 yt − ŷt −
p∑

�j(yt−j − ŷt−j) (21)
j=1

3 https://github.com/jsmerel/joint calcium ephys mapping.
ce Methods 269 (2016) 21–32

= êt −
p∑

j=1

�jêt−j. (22)

Finally, note that key hyperparameter settings are presented in
Supplementary Table 1.

2.5. Experimental methods

All experiments were performed in accordance with the guide-
lines and regulations of the Animal Care and Use Committee of the
University of California, Berkeley. Mice used for experiments in this
paper were either wild type (ICR white strain, Charles River), som-
IRES-Cre (JAX stock #018973); Ai9 Rosa-LSL-tdTomato (JAX stock
#007909), PV-Cre (JAX stock #008069); Ai9 Rosa-LSL-tdTomato, or
emx1-IRES-Cre (JAX stock #005628).

Viral infection: Neonatal emx1-cre mice were injected with
AAV9-CAG-flexed-Chr2-tdTomato (for 1-photon experiments) or
AAV9-syn-ChrimsonR-tdTomato (for 2-photon experiments) at
P0–P4. Viruses were acquired from the University of Pennsylvania
Vector Core. Undiluted viral aliquots were loaded into a Drum-
mond Nanoject injector. Neonates were briefly cryo-anesthetized
and placed in a head mold. With respect to the lambda suture coor-
dinates for S1 were: 2.0 mm AP; 3.0 mm L; 0.3 mm DV.

2-Photon optogenetic stimulation: 1040 nm light (femtoTrain,
Spectra-Physics) was  delivered to the sample using a VIVO 2-
Photon workstation (3i) based on a Sutter Moveable Objective
Microscope (Sutter, Novato, CA) and the hologram was created
using a Phasor 2-Photon computer-generated holography system
(3i). Light was  delivered for 10 ms  at 100 mW power on sample.
The hologram for these data was a disc of radius 15 �m.

For more detailed methods on brain slicing, in vitro and in vivo
electrophysiology, and 1-photon optogenetic stimulation, see Pluta
et al. (2015). All electrophysiology was analyzed at 20 kHz, or equiv-
alently, with timebins of 0.05 ms.

3. Results

3.1. AR noise model validation

We  have found the choice of noise model to be critical when
analyzing voltage-clamp data. It is common to use i.i.d Gaussian
noise for neurophysiological time-series (Paninski et al., 2012;
Richardson and Silberberg, 2008), but very often the noise can
exhibit temporal correlations. To obtain a recording of a voltage-
clamp noise process which contains no events, we  recorded from a
neuron exposed to an excitatory synaptic blocker (Kynurenic Acid,
4 mM)  while holding the cell near the inhibitory reversal potential
(−70 mV). Under these conditions, the recording should be rela-
tively event free; nonetheless the recording shows clear temporal
correlations (Fig. 2A). In the context of deconvolving these data, it
is primarily this correlated noise that drives false positives because
it can have similar features to PSCs.

To better capture the structure of voltage-clamp noise, we used
the more general AR process which we found was sufficiently flexi-
ble and expressive to represent the types of noise we encountered.
Specifically, an AR(2) model balanced model expressiveness and
computational cost. Fig. 2A and B shows that the extra structure
in the AR(2) model does in fact provide a better description of the
data.

For a systematic validation, we performed a comparison
between the AR(0) and AR(2) inference for many simulated traces

(10× 1 s traces per noise level). Specifically, we can simulate traces
with random event times and with various levels of AR(2) noise
added to the traces (i.e., varying SNR). In these simulations, events
are naturalistic in that they have variability in their distribution of

https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
https://github.com/jsmerel/joint_calcium_ephys_mapping
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Fig. 2. Validation of the AR(p) noise model and inference. (A) Top: a real voltage-clamp recording under “event-free” conditions such that the recording is dominated by
noise.  Middle: simulated noise from an AR(0) fit to the real example. Bottom: simulated noise from an AR(2) fit to the real example. The AR(2) example better captures the
structure of real noise. (B) Gray: periodogram estimate of the power spectral density (PSD) of an “event-free” recording. Blue: a parameteric fit to the PSD with an AR(0)
model. Red: a parameteric fit to the PSD with an AR(2) model. (C) Top: a simulated voltage-clamp recording with AR(2) noise. Middle, black: the true current for the top
trace.  Red: the true time-amplitude coordinate for each PSC. Blue: a bivariate histogram reflecting the estimated time-amplitude posterior distribution using an AR(0) noise
model  (uses a small, but non-zero minimum event size threshold). Bottom: same as in the middle trace but inference is performed with an AR(2) noise model. (D) Curves
depict  accuracy of inference as a function of SNR level (ranging an order of magnitude, with 1 indicating low noise relative to size of events and 10 indicating noise that has
marginal  variance larger than the signal) for AR(0) vs AR(2) model-based inference. The measure of accuracy is correlation coefficient between true (simulated) trace and
estimate of posterior mean. The asterisk indicates a biologically realistic SNR level equal to the example in (C). For each point on the curve, we  simulate timeseries with
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evel  begins to make inference difficult, both algorithms begin to lose accuracy. Ho
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mplitudes and time constants, and events may  overlap (2C). For
nference with either noise model, performance is similar when
here is low levels of noise (or for specific AR(2) noise process
arameters that result in only weak noise autocorrelation, not
hown), but the inference results diverge dramatically when the
oise is larger in magnitude. To summarize inference, we  examine
he correlation between the posterior mean trace and the “true”
imulated, noiseless event trace (2D). For biologically realistic
R(2) noise structure and magnitude (indicated by an asterisk in
D), inference with the AR(2) model indeed performs considerably
etter than with the AR(0) model. Note that in the high-SNR

imit, simple methods like template matching algorithms, greedy
ptimization, or other direct optimization of the model like-
ihood can perform well enough, so sample-based inference

ould be computationally excessive. However, this validation
emonstrates that in the biologically realistic noise regime, noise

s sufficiently large and structured for proper inference to be
seful.

.2. Comparison with other methods on spontaneous and evoked
SCs

We  also compared our method to two common PSC detec-
ion algorithms: a standard template-based approach (Clements

nd Bekkers, 1997) and a deconvolution approach (a Wiener Fil-
er Wiener, 1949, which we found tended to improve upon the
lightly simpler inverse filter used in Pernía-Andrade et al. (2012)).
lthough Clements and Bekkers (1997) is nearly twenty years
0 repeats). Both algorithms do very well in the high SNR regime. As soon as noise
 the AR(2) model inference degrades much more slowly. (For interpretation of the
rticle.)

old and is often outperformed by deconvolution approaches, it is
implemented in two  commonly used software packages for the
analysis of electrophysiological data: Axograph and pClamp. There-
fore it is still regularly used when PSC detection is performed
(Mardinly et al., 2016; Medelin et al., 2016). When testing these
algorithms, we attempted to give each its best chance to perform
well. Specifically, that means that the template-based and decon-
volution methods were given the average of the true underlying
events as a template. We  gave the Wiener Filter the true noise
power spectral density for simulated data. For real data with high
enough spontaneous rates, it was difficult to find a “quiet” section of
the trace to estimate the noise power spectral density (PSD); there-
fore we provided an AR fit to the noise from Bayesian inference for
the Wiener Filter’s noise PSD. For simulated data with Bayesian
inference, we provided the true priors on �r and �d that were used
to generate the data.

First, we  simulated a test set of recordings with realistic levels of
noise and with relatively low SNR PSCs. Each of the three algorithms
produces a time series equal in length to the input recording that
is something like a score that an event is happening at that point
in time. For the template-based method the output represents the
goodness-of-fit to the event template at that point in time, and for
the deconvolution the output is an estimate of the event ampli-
tude at that point in time. For the Bayesian approach the output

time series is the marginal posterior of an event at each sample.
Importantly, in practice the output for the template-matching and
deconvolution methods only have an empirically reasonable inter-
pretation in the high SNR case. To obtain estimates of event times
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Fig. 3. Comparison of methods on simulated data. (A) An example of inference/detection results for each method on a simulated voltage-clamp recording. For each method
we  show the output time-series for that method (i.e. the score template matching, deconvolved trace for deconvolution, and the posterior of event times for the Bayesian
approach), estimated event times, and the threshold used to determine those event times (for the Bayesian trace the threshold is so low that it cannot be seen above the
b  false
a e high
e n (C) e

f
s
d
o
a
t
c

t
i
d
t
l
a
o
l
m
B
a
m
t
q
f
t
t
m
o

i
T
a
f
i
t
p

aseline posterior). (B) Parametric curve showing the number of true positives and
cross  10 simulated traces with a total of 180 events ranging from 0.5 to 10 pA. Th
xcept  showing the true positive count as a function of the threshold. (D) Same as i

or each simulated trace for each method, we detected peaks above
ome threshold in these time series as a function of their standard
eviations. Fig. 3A shows an example of results for each algorithm
n simulated data. The threshold for each method’s output is shown
s a horizontal line, and inferred events are shown as dots. (The
hreshold for the Bayesian approach is difficult to see as it is very
lose to zero.)

By varying the threshold and counting the number of true posi-
ives and false positives, we can get a sense of how noisy the output
s from each approach. The Bayesian approach is able to accurately
etect more events while accumulating fewer false positives than
he other methods (Fig. 3B). Importantly, it also maintains similar
evels of true and false positives as the threshold is varied (Fig. 3C
nd D), indicating that our approach is more robust to the choice
f threshold. This is achieved because of the more precise and
ess noisy representation of PSC timing produced by the Bayesian

ethod which can be seen in the sharpness of the peaks in the
ayesian trace in Fig. 3A as compared to the other methods. The
verage error for true positives was also smallest for the Bayesian
ethod (see Supplemental Fig. 1). While there exists a threshold for

he template-matching and deconvolution methods that performs
uite well, small deviations from this value lead to vastly more
alse positives or less true positives (Fig. 3C and D). When applying
hese methods to real data, it may  not be possible to finely tune the
hreshold parameter on a per dataset basis since ground truth infor-

ation is not available. This can be especially troublesome when
nline or closed-loop analysis is desired.

We next compared methods on real voltage-clamp recordings
n which we could modulate the SNR of an event physiologically.
o achieve this, we made paired patch recordings of a PV+ cell and

 layer V pyramidal cell until we found an inhibitory connection

rom the fast-spiking cell onto the pyramidal cell with a probabil-
ty of a postsynaptic event extremely close to 1.0. We  then moved
he holding potential for the postsynaptic cell towards the reversal
otential for the inhibitory current. In this way, we could obtain
 positives as a function of peak detection threshold. The results are from detection
lighted point in each line corresponds the threshold used in (A). (C) Same as in (B)
xcept showing the false positive count.

ground truth data in which we had direct control over the SNR
(Fig. 4A–C, top traces).

We  ran 50 trials each at three holding potentials representing
relatively high, medium, and low SNR regimes and detected events
using all three methods. Only the Bayesian approach was sensitive
enough to detect events reliably in the low SNR case (Fig. 4A–C,
rasters). Similar to the simulated data, the Bayesian approach was
also the only method which was robust to the thresholding param-
eter, indicating that the posterior over event times is highly peaked.
As expected, as the SNR decreases, the ability to accurately detect
the timing of the event decreases.

Any approach will have hyperparameters that must be selected,
and the Bayesian approach allows for tuning of hyperparame-
ters corresponding to prior distributions on model parameters.
We show that a single set of prior distribution hyperparameters
can perform well across several physiological regimes by running
inference on traces from different cell types and under different
recording conditions while holding the hyperparameters constant.
In Fig. 4G we show that with a single set of prior parameters our
method can detect EPSCs across three different cell types: a layer
II/III pyramidal cell, a SOM+ interneuron, and PV+ interneuron.
Despite the differing statistics in each of these traces (event features
and noise), event detection performs well. In 4H we show results for
spontaneous IPSCs in a layer II/III pyramidal cell. For these results,
we used the same prior parameters as in Fig. 4G except that we
increased the adjusted the bounds for the time constants to account
for the slower kinetics of IPSCs. Finally, in Fig. 4I we show results
on an FS cell recorded in vivo. The prior parameter settings here
are similar to those in Fig. 4G except that we  had to increase the
rate prior on the number of events. We  stress that there is no cor-
rect prior setting, but that the priors allow the user to trade off

between objectives like true versus false positives (e.g., through
the rate parameter or minimum event amplitude). For reference,
we include the hyperparameter settings for all inference results in
Supplementary Table 1.
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Fig. 4. Results on real voltage-clamp recordings. (A–F) Comparison to other detection methods on real data while modulating the SNR. (A) Top: a single trial of the spiking
presynaptic cell firing from direct current injection. Middle traces: three example trials of the connected postsynaptic cell responding with an IPSC. The postsynaptic cell is
being  clamped at −45 mV.  Below the examples is the mean trace over all 50 trials. Bottom rasters: estimated events for 50 trials for each detection method. (B and C) Same as
in  (A) except with the postsynaptic cell held at −50 mV  (B) and −55 mV (C). The scales for the example traces are all the same across (A–C) and likewise for the mean traces.
(D–F)  The average number of evoked events counted in a window around the spike time (1.0 ms  before to 5.0 ms after the spike) above a baseline rate of detected events
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.3. Extension 1: direct optical stimulation artifact

For certain experiments, it may  be productive to actively drive
ells to fire in order to study circuit properties. In particular, we  may
ant to combine voltage-clamp recordings with spatiotemporally

tructured optical stimulation of a putative presynaptic population
f neurons. This can induce optically evoked artifacts from direct
ptical currents in the voltage-clamp recording. As an example,
ne could express an optogenetic channel pan-neuronally which
ould allow the simultaneous mapping EPSCs and IPSCs onto one

ell. Under these conditions, the cell under voltage-clamp will also
xpress opsin and respond to any stimulating light. Similarly, in
eurotransmitter uncaging mapping experiments, there will be a
irect stimulation of the postsynaptic cell at most stimulation sites
lose to the cell.

We show that our approach is able to decompose a simulated
race with a direct optical current in Fig. 5. Specifically, we sim-
lated a trace consisting of many EPSCs with an additive direct
ptical stimulation current, consistent with Eq. (10). On this sim-
lated data, inference performs very well in terms of extracting
vents simultaneously with artifact isolation.

In Fig. 5B–D, we present results on real data obtained by

ombining voltage-clamp recording with one-photon stimulation
ia a digital micromirror device (DMD) as well as two-photon,
olographic stimulation of neurons. In Fig. 5B, we show direct
urrents at many different stimulation locations with one-photon
d C. The dotted horizontal line represents perfect performance of one extra event
s EPSCs detected in a layer II/III pyramidal cell, top, a SOM+ cell, middle, and a PV+
and IPSCs detected in an in vivo recording from a FS cell.

excitation via a DMD. Under these conditions, the shape of the
current is not well characterized by a parameterized template
function so we must use an empirically derived template. When
normalized, all of the currents have roughly similar shapes, val-
idating our approximation of the artifact as a scaled template.
In Fig. 5C, we  show PSC inference on three trials from a single
stimulation location that has putative evoked PSCs overlapping
the direct stimulation artifact. In Fig. 5D, we show similar results
except the stimulation is performed using two-photon excitation
with a spatial-light modulator (SLM). We  found that under these
conditions, we  were able to use the model in Eq. (9) and fit two time
constants to the optical current. This allowed for a more flexible fit
that could account for the differences in the direct current shape as
the stimulation location varied. The two sets of traces and results in
Fig. 5D are for three trials at two  different locations. These locations
were chosen because they contained putative evoked EPSCs.

3.4. Extension 2: passive mapping experiment (simulation)

In addition to electrical recordings from a post-synaptic cell,
we may  also have calcium indicator available in pre-synaptic cells
(Aaron and Yuste, 2006). This allows for a passive mapping exper-

iment from many pre-synaptic cells (optically imaged) to a single
post-synaptic cell (patched). Here we  provide an example of the
usage of the joint inference procedure (Fig. 6A). We  have simulated
a population of presynaptic cells which are observed via calcium
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Fig. 5. Removing direct stimulation artifacts from active mapping data. (A) Top: a simulated voltage-clamp recording that is contaminated by a large direct, optical current.
Top  middle: the true direct current (blue) with an estimate of the inferred direct current (dashed, red). Bottom middle: the true current used in the top trace. Bottom,
the  inferred amplitude-time posterior (blue) with true amplitude-time coordinates overlaid (red X’s). (B) Top: direct optical currents evoked in a single cell by stimulating
different locations with one-photon excitation and a DMD. Bottom: same as above but each trace is normalized to have the same amplitude. (C and D) PSC detection with
direct  optical stimulation on real mapping data. (C) Inference results for one-photon, DMD-based mapping data with direct stimulation contamination. All three trials are for
a  single stimulation site. Red line shows when the stimulating laser is on. Dark blue trace shows the posterior over event times. Light blue trace shows the MAP  estimate for
the  synaptic currents. Maroon trace, MAP  estimate for the direct stimulation. Black, raw voltage-clamp observation. (D) Inference results for two-photon, SLM-based mapping
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maging (SNR for these cells is plausible for a well-tuned setting,
nd bin size is 35 ms). These cells drive post-synaptic events in
he simulated patched cell (noise is biologically plausible, and bin
ize is.05 ms). In Fig. 6A, 4 of 6 candidate presynaptic neurons are

bserved. Postsynaptic events evoked by unobserved neurons are
nferred on a per event basis whereas events co-occurring with
resynaptic events arise from a single variable (see model Eq.
12)).
n location which shows putative evoked EPSCs riding on top of direct stimulation
from the cell. (For interpretation of the references to color in this figure legend, the

We  see that we can recover events jointly from the calcium
imaging and electrophysiology, with event identity successfully
linked across the two modalities. In addition, the histogram in the
right panel of Fig. 6B indicates that combining electrophysiology

and calcium imaging tends to yield increased temporal precision
of event times compared to inference from calcium imaging alone
(this intuitively follows from the fact that the electrophysiology
has much higher temporal resolution and the Bayesian inference
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Fig. 6. Joint inference over simulated calcium and voltage data. (A) Observed data and true/inferred event times for four simultaneously observed calcium traces (top) and
(for  simplicity) just a single voltage trace (bottom). Colored dots indicate to which trace the algorithm matched each event; gray dots in bottom correspond to voltage events
that  were detected but (correctly) not matched to any detected calcium events. In this example the algorithm correctly matched all calcium-observed events. (B) Histograms
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an combine information across modalities). This simulation serves
s a proof-of-concept that this probabilistic approach can provide
eaningful automatic analysis for passive mapping experiments.

. Discussion

In this work, we have presented a probabilistic formulation of
he event detection problem for electrophysiological recordings
ith an emphasis on PSC detection. This method works on simu-

ated and real data and its performance compares favorably relative
o existing methods. We  have also shown how the probabilis-
ic model can be incorporated into two extensions applicable for

apping experiments which make use either of optical stimu-
ation or multi-modal fusion of electrophysiology with calcium
maging.

The PSC detection problem explored in this paper is similar
o the more general set of problems in neuroscience (and signal
rocessing more broadly) having to do with inferring events in
oisy timeseries. In neuroscience, recent work has proposed prob-
bilistic, MCMC-based tools for analysis of calcium imaging data
Vogelstein et al., 2009; Pnevmatikakis et al., 2013). However, we
re not aware of similar tools yet being leveraged for analysis of
lectrophysiology data. The models developed in this paper are for-
ally similar to those used in the calcium imaging setting, with

ppropriate modifications to allow for structured AR noise and dis-
inct per event kinetics, as well as detailing the extensions related
o the mapping setting.

While there are other discriminative methods that have been
roposed for deconvolution (e.g. see Theis et al. (2016) for
lternative event-detection methods for calcium imaging), these
pproaches lack the clear probabilistic generative semantics which
acilitate modularity and extension to hierarchical models such as
hose useful for mapping experiments. Our approach also com-
lements related work inferring synaptic inputs in a probabilistic
ashion using particle filtering (Paninski et al., 2012) from voltage
races. The present approach focuses on current traces, allows for
er event kinetics, is perhaps simpler to implement, and does not
equire temporal discretization.

The inference approach presented in this work makes most
ense when PSC rates are relatively low such that overlap is limited.

or very high levels of overlap (i.e. the high-rate case), we do not
xpect there is always hope to resolve precise timing of single
vents, and it is likely that approaches more like Vogelstein et al.
2010) or Paninski et al. (2012) may  be appropriate. That said, we
d event times is large; incorporating voltage information drastically reduces this
 data fusion approach. (For interpretation of the references to color in this figure

have found that our method can still give sensible results even
when event rates are high (for example, see Fig. 4I).

Aside from the extensions we  considered, other sophisticated
prior structure can be incorporated by making the model hierar-
chical. For example, in the single trace setting we might expect
the events to cluster by pre-synaptic cell identity or cell type. Even
without the additional observed traces employed in our mapping
model, it would be conceivable to specify and infer latent source
clusters based on structure in the distribution of shape or amplitude
of post-synaptic events, depending on what were of most interest
scientifically. In the simplest case, this would result in a mixture
model for the events, with each event associated with a latent
pre-synaptic source. We  plan to pursue these model extensions in
future work.
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